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Abstract

Recently, leveraging pre-trained vision-language models (VLMs) for building vision-language-action
(VLA) models has emerged as a promising approach to effective robot manipulation learning.
However, only few methods incorporate 3D signals into VLMs for action prediction, and they do
not fully leverage the spatial structure inherent in 3D data, leading to low sample efficiency. In this
paper, we introduce BridgeVLA, a novel 3D VLA model that (1) projects 3D inputs to multiple
2D images, ensuring input alignment with the VLM backbone, and (2) utilizes 2D heatmaps for
action prediction, unifying the input and output spaces within a consistent 2D image space. In
addition, we propose a scalable pre-training method that equips the VLM backbone with the
capability to predict 2D heatmaps before downstream policy learning. Extensive experiments
show the proposed method is able to learn 3D manipulation efficiently and effectively. BridgeVLA
outperforms state-of-the-art baseline methods across three simulation benchmarks. In RLBench,
it improves the average success rate from 81.4% to 88.2%. In COLOSSEUM, it demonstrates
significantly better performance in challenging generalization settings, boosting the average success
rate from 56.7% to 64.0%. In GemBench, it surpasses all the comparing baseline methods in
terms of average success rate. In real-robot experiments, BridgeVLA outperforms a state-of-the-art
baseline method by 32% on average. It generalizes robustly in multiple out-of-distribution settings,
including visual disturbances and unseen instructions. Remarkably, it is able to achieve a success
rate of 96.8% on 10+ tasks with only 3 trajectories per task, highlighting its extraordinary sample
efficiency.

Project Page: https://bridgevla.github.io/
Corresponding Email: wuhongtao.123@bytedance.com; tnt@nlpr.ia.ac.cn

1 Introduction

Leveraging pre-trained vision-language models (VLMs) [1–4] for developing large vision-language-action (VLA)
models has become a promising method for learning generalizable and robust manipulation policies [5–9].
However, most VLA models only incorporate 2D image inputs and require extensive efforts on data collection.
On the other hand, 3D robot policies leverage 3D structural priors in model design and demonstrate exceptional
sample efficiency in learning complex 3D robot manipulation tasks [10–14]. Can we develop a unified 3D VLA
model which combines the effectiveness of VLA models with the efficiency from 3D policies?

Although there have been some works exploring integrating 3D information into VLMs for developing 3D VLA
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Figure 1 Overview. BridgeVLA is a novel 3D VLA model that aligns the input and output within a unified 2D
image space. It is pre-trained on object grounding using 2D heatmaps and fine-tuned on action prediction for 3D
manipulation. Experiment results in both simulation and the real world show that it is able to learn 3D manipulation
both efficiently and effectively.

models [15, 16], these works typically convert actions into token sequences that do not have spatial structure
and use next-token prediction to predict actions. This strategy fails to take advantage of the 3D structural
priors as previous efficient 3D policies [10–14] that align the observation input and action output into a unified
space, therefore leading to poor sample efficiency. Another significant challenge in developing 3D VLA models
lies in the misalignment between the 3D inputs used in action fine-tuning and the 2D image inputs used in
original VLM pre-training, causing a large distributional shift from the original VLM pre-training.

To tackle the challenges mentioned above, as inllustrated in Fig. 1, we present BridgeVLA, a novel 3D VLA
model that achieves remarkable sample efficiency and strong generalization capabilities. To ensure input
alignment with the pre-trained VLM backbone, BridgeVLA transforms a 3D point cloud observation into
multiple 2D images captured from different orthographic projection views [13, 14]. To leverage the structural
priors of the 3D input, BridgeVLA is trained to predict 2D heatmaps for translational action prediction. The
2D heatmaps, generated from the tokens corresponding to the projection images, share the same resolution as
these images, aligning the input observations and output actions within a unified spatial structure. Given
that the original VLM is pre-trained to predict token sequences, which is incompatible with our VLA’s 2D
heatmap output, we also introduce a scalable pre-training method, which trains the model to ground objects
with heatmaps conditioned on text inputs. This pre-training method equips the VLM with the capabilities to
predict heatmaps before downstream fine-tuning for policy learning. Overall, our design aligns the input and

output within a shared 2D space in both pre-training and fine-tuning.

We perform extensive experiments in both simulation and the real world to evaluate the proposed method.
Results show that BridgeVLA is able to learn 3D manipulation both efficiently and effectively. It outperforms
state-of-the-art baseline methods in RLBench [17], improving the average success rate from 81.4% to 88.2%.
In COLOSSEUM [18], it showcases strong performance in challenging generalization settings, boosting the
success rate from 56.7% to 64.0%. In GemBench [19], it surpasses all the comparing baseline methods in terms
of average success rate. In real-robot experiments, we evaluate on seven different settings, spanning from
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visual perturbations to manipulating objects from unseen categories. BridgeVLA surpasses a state-of-the-art
method by 32% on average and demonstrates strong performance in generalizing to multiple out-of-distribution
settings. Notably, BridgeVLA is able to achieve a success rate of 96.8% on 10+ tasks using only 3 trajectories
per task for training, highlighting its superb sample efficiency. In summary, the contributions of this paper
are threefold:

• We introduce BridgeVLA, a novel 3D VLA model that efficiently and effectively learns 3D robot
manipulation with a vision-language model via input-output alignment with 2D heatmaps.

• We propose a scalable pre-training method to equip the model with the capability to predict heatmaps
conditioned on text inputs via object grounding.

• We conduct extensive experiments in both simulation and real-world environments to thoroughly evaluate
the proposed method. Results show that BridgeVLA outperforms state-of-the-art methods in both
settings and achieves exceptional sample efficiency in real-robot experiments.

2 Related Work

Language-Conditioned Visuomotor Policies. Most language-conditioned visuomotor policies employ
transformers to process 2D visual inputs and directly generate 3D actions for manipulation [5–9, 20–25]. In
these works, leveraging pre-trained vision-language models (VLMs) for developing large vision-language-action
(VLA) models has become popular for its effectiveness on learning complex manipulation [5–9]. However,
such 2D image-based policies typically require significant efforts on data collection, often needing hundreds of
trajectories per task to learn effectively. On the other hand, 3D manipulation policies hold great potential
for efficient learning by taking advantage of the spatial structure inherent in the 3D inputs. A popular line
of works take as inputs point cloud data [11, 12, 26–28]. For example, Act3D [12] proposes to create a 3D
feature cloud by lifting image features to the observation point cloud and predicts translational actions via
classification for 3D points in the observation space. Another line of works utilize voxels to represent the
observation space and predict translational actions within the voxel space, unifying the input observation
and output actions within the same space [10, 29]. Recently, RVT [13] and RVT-2 [14] propose to leverage
orthographic projection of 3D point clouds to convert 3D signals to 2D images to avoid high computational
cost on processing 3D inputs. Different from the above methods, our method aims to unify the effectiveness
of VLA models and the efficiency of 3D policies within a single cohesive framework, combining the best of
both worlds.

3D Vision-Language-Action (VLA) Models. While 2D VLA models have been extensively studied, 3D
VLA models [15, 28, 30, 31] remain relatively under-explored. Zhen et al. [15] build 3D-VLA on top of a large
language model (LLM) and train the model to perform 3D reasoning, multi-modal goal generation, and robot
planning. Lift3D [30] proposes to enhance 2D foundation models (e.g., DINOv2 [32]) with implicit and explicit
3D robotic representation for learning 3D manipulation policies. FP3 [28] leverages a transformer to fuse the
information from point clouds, proprioceptive states, and language instructions. PointVLA [31] utilizes a
VLM and a point cloud encoder to process 2D images and 3D point clouds, respectively. The embeddings
from both encoders are injected into an action expert for action prediction. SpatialVLA [16] introduces Ego3D
position encoding to inject 3D information into 2D image observation and adaptive action grids to represent
robot movement in a more transferable way. Our method is different from the above methods in that it is
designed in a way to take advantage of the spatial structure of 3D inputs in action prediction. In addition,
it bridges the gap between the 2D image inputs of pre-trained VLMs and the 3D inputs by projecting the
3D inputs into multiple 2D images instead of injecting 3D information into the VLMs. Such design enables
it to simultaneously leverages the broad knowledge in the VLM backbone and the spatial structure priors
embedded in 3D inputs.
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Figure 2 Model Architecture. (a) 2D Heatmap Pre-training: we train BridgeVLA on 2D object detection datasets.
The model takes as inputs an image and a language describing the target object and outputs a 2D heatmap which
highlights regions of interest that correspond to the target object. Note that the bounding box shown here is for
illustrative purposes only; it is not present in the image when input to the model. (b) 3D Action Fine-tuning: the
model takes as inputs three orthographic projection images of a 3D point cloud and a language instruction. It outputs
three 2D heatmaps, which highlight the position of the end-effector in the next keyframe across all three views. For
the remaining action components, it uses an MLP to process the image feature tokens to predict the rotation action,
gripper action, and collision flag of the next keyframe.

3 BridgeVLA

3.1 Preliminaries

BridgeVLA aims to learn a multi-task 3D robot manipulation policy π, which maps the observation o and a
language instruction l to an action a:

π : (o, l) 7→ a (1)

We assume access to a set of expert demonstrations D = {τ i}Ni=1 containing N trajectories. And each trajectory
contains a language instruction and a sequence of observation-action pairs, i.e., τ i = {li, (oi

1, a
i
1), ..., (o

i
H , aiH)}.

The observation o is one or multiple RGB-D images captured from one or multiple viewpoints. Following
prior works [10, 12, 13], the action a consists of a 6-DoF end-effector pose T ∈ SE(3), a target gripper state
g ∈ {0, 1}, and a collision flag c ∈ {0, 1} of the next key frame. The collision flag c indicates whether the
motion planner should avoid collisions while moving towards the target pose. A key frame typically captures
important or bottleneck steps in a trajectory (detailed in appendix B.1) [33]. BridgeVLA operates through an
iterative process: 1) predicting the action at conditioned on the current observation ot and instruction l, 2)
moving to the predicted next keyframe pose Tt using a sampling-based motion planner [34–36], 3) updating
observation and repeating until task completion or reaching a maximum step Hmax.

As illustrated in Fig. 2, BridgeVLA employs a dual-phase training recipe. During pre-training, it is trained to
predict 2D heatmaps on object detection datasets. During fine-tuning, point clouds are projected into multiple
2D images as inputs to the VLM backbone. The model is trained to predict 2D heatmaps for estimating the
translational action and other action components. This design aligns the input and output within a shared 2D

space in both pre-training and fine-tuning.

3.2 2D-Heatmap Pre-training

The VLM backbone was originally pre-trained to predict token sequences without spatial structure. To equip
it with the same ability to predict heatmaps as downstream policy learning, we introduce a pre-training stage
which trains the model to ground target objects via heatmaps. Concretely, we leverage the 120K object
detection split of RoboPoint [37] as our pre-training dataset. For each image, we construct the ground-truth
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heatmap Hgt from the bounding boxes of all objects of interest. Specifically, for each object, we construct a
probability map with spatial truncation:

Hgt
i (x) =

{
pi(x) if pi(x) ≥ pmin

0 otherwise (2)

where x = (u, v) denotes the pixel position, pi(x) = exp
(
−∥x− x̂i∥2/2σ2

)
, x̂i is the center of the object

bounding box, and pmin is a probability threshold. For all the objects of interest, we fuse the probability map
of all objects via averaging and normalization to obtain Hgt:

Hgt(x) =
Havg(x)∑

x∈Ω Havg(x)
, where Havg(x) =

1

N

N∑
i=1

Hgt
i (x) (3)

where Ω denotes the pixel space. Please refer to Fig. 9 for samples of the ground-truth heatmaps.

As illustrated in Fig. 2, we input an image along with the text prompt describing the objects of interest into
the VLM backbone of BridgeVLA. In this paper, we employ PaliGemma [1] as the VLM backbone, which
consists of a SigLIP vision encoder [38] and a Gemma transformer backbone [39]. During its pre-training,
PaliGemma takes as input one or multiple 2D images together with a prefix text (e.g., a question about the
image) and outputs a suffix text (e.g., an answer to the question). While the model uses causal attention for
predicting suffix text tokens, it adopts bidirectional attention for the image tokens and the prefix text tokens.
This allows the image tokens to fuse information from the prefix text.

To predict the heatmap, we first rearrange the output image tokens according to their patch positions to
reconstruct the spatial feature grid. A convex upsampling block [40] then converts the grid into a heatmap with
the same resolution as the input image. The model is trained with a cross-entropy loss to predict heatmaps
that localize the position of all objects of interest in the image. We emphasize that the proposed pre-training
strategy outputs a spatially aware 2D heatmap, in contrast to the conventional next-token-prediction used
in prior works [15, 16]. Moreover, this approach is highly scalable, as it can, in principle, leverage any
vision-language datasets that can be formulated as a heatmap prediction tasks, such as keypoint detection
and semantic segmentation.

3.3 3D Action Fine-tuning

During fine-tuning, we first reconstruct a point cloud of the scene from the RGB-D images captured from
calibrated cameras. To align with the 2D image input of the VLM backbone, we render three orthographic
projection images of the point cloud from three viewpoints (top, front, and right) and use these images as
the input images for the VLM backbone as in RVT [13] and RVT-2 [14]. These images, along with the task
instruction, are then fed into the pre-trained VLM backbone to generate a heatmap for each of the three
views. Importantly, we do not incorporate any additional information (e.g., robot states) during the VLM
forward pass to minimize the distribution shift between pre-training and fine-tuning.

For translational actions, we back-project the heatmaps of all three views to estimate the scores of all 3D
point grids distributed uniformly across the robot workspace. The position of the 3D point with the highest
score determines the end-effector’s translation in the next keyframe. Similar to previous works [13, 14], we use
Euler angles to represent rotational actions where each axis is discretized into 72 bins. To predict the rotation,
binary gripper action, and collision avoidance flag, we integrate features from global and local contexts. For
the global feature, max-pooling is applied to the output tokens of each inputted orthographic projection
image, resulting in three tokens in total – one for each view. For the local feature, we extract a token from
the heatmap peak of each view, also resulting in three tokens in total. All these tokens are concatenated and
passed through MLP to predict the rotation action, gripper action, and collision avoidance flag.

Following the approach in prior works [14, 29], BridgeVLA adopts a coarse-to-fine refinement strategy for
accurate action prediction. After the initial prediction on the original point cloud, we zoom in and crop the
point cloud with a cuboid centered at the predicted translation. A second forward pass is performed on the
cropped, zoomed-in point cloud. The predicted action from the second pass is used for execution.
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Overall Task Success Rate (%)

Models
Avg.

SR (%) ↑
Avg.

Rank ↓
Close
Jar

Drag
Stick

Insert
Peg

Meat off
Grill

Open
Drawer

Place
Cups

Place
Wine

Push
Buttons

Image-BC (CNN) [10, 41] 1.3 9.3 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0
Image-BC (ViT) [10, 41] 1.3 9.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C2F-ARM-BC [10, 29] 20.1 8.7 24.0 24.0 4.0 20.0 20.0 0.0 8.0 72.0

HiveFormer [42] 45.3 6.9 52.0 76.0 0.0 100.0 52.0 0.0 80.0 84.0
PolarNet [26] 46.4 6.5 36.0 92.0 4.0 100.0 84.0 0.0 40.0 96.0
PerAct [43] 49.4 6.3 55.2±4.7 89.6±4.1 5.6±4.1 70.4±2.0 88.0±5.7 2.4±3.2 44.8±7.8 92.8±3.0
Act3D [12] 65.0 4.3 92.0 92.0 27.0 94.0 93.0 3.0 80.0 99.0
RVT [13] 62.9 4.4 52.0±2.5 99.2±1.6 11.2±3.0 88.0±2.5 71.2±6.9 4.0±2.5 91.0±5.2 100.0±0.0

3D Diffuser Actor [11] 81.3 2.5 96.0±2.5 100.0±0.0 65.6±4.1 96.8±1.6 89.6±4.1 24.0±7.6 93.6±4.8 98.4±2.0
RVT-2 [14] 81.4 2.5 100.0±0.0 99.0±1.7 40.0±0.0 99.0±1.7 74.0±11.8 38.0±4.5 95.0±3.3 100.0±0.0

BridgeVLA (Ours) 88.2 1.9 100.0±0.0 100.0±0.0 88.0±2.8 100.0±0.0 100.0±0.0 58.4±10.0 88.0±2.8 98.4±2.2

Models
Put in

Cupboard
Put in
Drawer

Put in
Safe

Screw
Bulb

Slide
Block

Sort
Shape

Stack
Blocks

Stack
Cups

Sweep to
Dustpan

Turn
Tap

Image-BC (CNN) [10, 41] 0.0 8.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0
Image-BC (ViT) [10, 41] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.0
C2F-ARM-BC [10, 29] 0.0 4.0 12.0 8.0 16.0 8.0 0.0 0.0 0.0 68.0

HiveFormer [42] 32.0 68.0 76.0 8.0 64.0 8.0 8.0 0.0 28.0 80.0
PolarNet [26] 12.0 32.0 84.0 44.0 56.0 12.0 4.0 8.0 52.0 80.0
PerAct [43] 28.0±4.4 51.2±4.7 84.0±3.6 17.6±2.0 74.0±13.0 16.8±4.7 26.4±3.2 2.4±2.0 52.0±0.0 88.0±4.4
Act3D [12] 51.0 90.0 95.0 47.0 93.0 8.0 12.0 9.0 92.0 94.0
RVT [13] 49.6±3.2 88.0±5.7 91.2±3.0 48.0±5.7 81.6±5.4 36.0±2.5 28.8±3.9 26.4±8.2 72.0±0.0 93.6±4.1

3D Diffuser Actor [11] 85.6±4.1 96.0±3.6 97.6±2.0 82.4±2.0 97.6±3.2 44.0±4.4 68.3±3.3 47.2±8.5 84.0±4.4 99.2±1.6

RVT-2 [14] 66.0±4.5 96.0±0.0 96.0±2.8 88.0±4.9 92.0±2.8 35.0±7.1 80.0±2.8 69.0±5.9 100.0±0.0 99.0±1.7
BridgeVLA (Ours) 73.6±4.6 99.2±1.8 99.2±1.8 87.2±6.6 96.0±2.8 60.8±7.7 76.8±8.7 81.6±3.6 87.2±1.8 92.8±3.3

Table 1 Results on RLBench. The “Avg. Rank” column reports the average rank of each method across all 18 tasks,
where lower values indicate better overall performance. BridgeVLA achieves the best performance in 10 out of 18 tasks.

The training loss during fine-tuning consists of four components:

L = Ltrans + Lrot + Lgripper + Lcollision (4)

Similar to pre-training, Ltrans is a cross-entropy loss that supervises the heatmap prediction for translational
actions. The ground-truth heatmap for each orthographic view is the normalized single-object probability map
defined in Eq. 2, where x̂i represents the projected pixel position of the ground-truth end-effector position
in the next keyframe. As we discretize the Euler angles for rotation into bins, we also apply cross-entropy
loss in Lrot to supervise rotation prediction. For gripper action and collision avoidance, we use the binary
cross-entropy loss in Lgripper and Lcollision as supervision. To enhance geometric robustness, random rigid-body
transformations are applied jointly to the point cloud and the ground-truth action during training. Additional
training details can be found in Appendix A.

4 Experiments

In this section, we perform extensive experiments in both simulation and the real world to evaluate the
proposed method. Through the experiments, we aim to answer four questions:

Q1: How effective does BridgeVLA learn 3D robot manipulation compared to state-of-the-art methods?

Q2: Is BridgeVLA capable of learning efficiently from very limited data (e.g., 3 trajectories per task)?

Q3: How robust is BridgeVLA on handling visual disturbances (e.g., distractors, background, and lighting)?

Q4: How does BridgeVLA generalize to novel object-skill combinations and objects from previously unseen
categories?

4.1 Simulation Experiments

4.1.1 Experiments on RLBench

Setup. RLBench [17] implements tasks in CoppeliaSim [44] using a Franka Panda robot mounted with a
parallel-jaw gripper. The observation contains four RGB-D images captured from four calibrated cameras
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Overall Success Rate (%)

Models Avg. SR (%) ↑ Avg. Rank ↓ All Perturbations MO-COLOR RO-COLOR MO-TEXTURE RO-TEXTURE MO-SIZE

R3M-MLP[46] 0.8 5.71 0.6 0.4 0.0 0.0 0.0 1.8
MVP-MLP[47] 1.6 5.0 0.8 1.2 0.0 0.4 0.0 4.44

PerAct[43] 27.9 3.71 7.2 24.0 29.2 28.8 17.71 35.6
RVT[13] 35.4 3.28 6.4 26.0 31.3 44.8 41.1 35.3

RVT-2[14] 56.7 1.92 15.6 ± 0.8 53.0 ± 0.9 54.6 ± 0.6 59.7 ± 0.7 56.7 ± 1.4 60.9 ± 0.9
BridgeVLA (Ours) 64.0 1.07 18.7 ± 2.2 60.5 ± 1.1 63.8 ± 0.1 63.5 ± 1.5 68.4 ± 3.3 69.3 ± 1.0

Models RO-SIZE Light Color Table Color Table Texture Distractor Background Texture RLBench Camera Pose

R3M-MLP[46] 0.0 1.0 1.4 0.2 1.6 1.2 2.0 0.8
MVP-MLP[47] 0.0 1.6 1.6 1.0 3.8 2.2 2.0 2.6

PerAct[43] 29.3 29.1 30.4 23.2 27.1 33.5 39.4 36.3
RVT[13] 40.5 34.0 30.0 45.2 18.8 46.4 53.4 42.2

RVT-2[14] 53.4 ± 1.5 58.0 ± 1.1 62.6 ± 0.9 56.6 ± 0.9 60.8 ± 0.5 68.7 ± 1.1 68.8 ± 1.3 64.4 ± 0.5
BridgeVLA (Ours) 61.7 ± 0.8 69.7 ± 1.2 75.7 ± 0.9 71.3 ± 0.7 51.8 ± 1.5 74.8 ± 1.0 73.1 ± 0.2 73.8 ± 0.3

Table 2 Results on the COLOSSEUM Benchmark. The table shows the success rates across 14 generalization settings.
The “Avg. Rank” column reports the average rank of each method across all perturbations, where lower values indicate
better overall performance. Compared to the state-of-the-art baseline, BridgeVLA improves the average success rate
by 7.3%.

positioned at the front, left shoulder, right should, and wrist. Following previous works [10–14], we perform
experiments on 18 tasks from RLBench. These tasks span 1) non-prehensile manipulation (e.g., slide block to
target), 2) pick-and-place (e.g., stack cups), and 3) high-precision insertion (e.g., insert peg). Each task is
provided with 100 expert demonstrations. And each demonstration is paired with language instruction and
multiple keyframes. Models are evaluated via binary success rates over 25 trials per task, with a maximum of
25 action steps per trial.

Baselines. We compare BridgeVLA with multiple baselines. (1) Image-BC (CNN) and Image-BC (ViT) [41]
are two 2D baseline methods which predict the actions directly from 2D images using CNN and ViT as
the backbone, respectively. (2) C2F-ARM-BC [29] predicts the next keyframe action in the voxel space with
a coarse-to-fine strategy. (3) PerAct [10] also operates in the voxel space and predicts the action with a
perciever transformer [43]. (4) HiveFormer incorporates historical information using a unified multi-modal
transformer architecture. (5) PolarNet employs PointNext [45] to encode the 3D scene and predicts both
heatmaps and offsets for all points to estimate translational actions. (6) Act3D [12] predicts the next keyframe
action by selecting the point with the highest score from a set of randomly sampled points in the workspace.
(7) 3D Diffuser Actor [11] generates 3D trajectories via a diffusion process conditioned on 3D observation
and language instructions. (8) RVT [13] uses multi-view transformer to aggregate information from multiple
orthographic views of the point cloud observation. (9) And RVT-2 [14], the current state-of-the-art method,
further improves the precision of its prior via a coarse-to-fine strategy.

Results. In total, we evaluate BridgeVLA five times to minimize statistical bias. The results are shown in
Table 1. BridgeVLA outperforms all the comparing baseline methods, achieving an average success rate of
88.2% and an average rank of 1.9 across all the 18 tasks, establishing a new state of the art in this benchmark.
These results address Q1, demonstrating the effectiveness of BridgeVLA in learning complex 3D manipulation
tasks. We highlight that BridgeVLA outperforms the best baseline method by a large margin in Insert Peg
(88.0% vs 40.0%) and Sort Shape (60.8% vs 35.0%). These two tasks demand highly precise alignment between
the peg and hole and the block and sorter, respectively. The high success rates of our method showcase its
strong capabilities of learning precise manipulation which is highly desirable in many industrial applications.
Among the 18 tasks, BridgeVLA performs the worst in Place Cups, despite surpassing all the comparing
baseline methods. We hypothesize this is because the target keypoints are often occluded in all orthographic
projection views, which makes learning and prediction more challenging. In the future, we plan to explore
dynamically selecting the projection views for rendering to avoid this problem.
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Method Average L1 L2 L3 L4

Hiveformer [42] 30.4 60.3 ± 1.5 26.1 ± 1.4 35.1 ± 1.7 0.0 ± 0.0
PolarNet [26] 38.4 77.7 ± 0.9 37.1 ± 1.4 38.5 ± 1.7 0.1 ± 0.2
3D Diffuser Actor [11] 44.0 91.9 ± 0.8 43.4 ± 2.8 37.0 ± 2.2 0.0 ± 0.0
RVT-2 [14] 44.0 89.1 ± 0.8 51.0 ± 2.3 36.0 ± 2.2 0.0 ± 0.0
3D-LOTUS [19] 45.7 94.3 ± 1.4 49.9 ± 2.2 38.1 ± 1.1 0.3 ± 0.3
3D-LOTUS++ [19] 48.0 68.7 ± 0.6 64.5 ± 0.9 41.5 ± 1.8 17.4 ± 0.4
BridgeVLA (Ours) 50.0 91.1 ± 1.1 65.0 ± 1.3 43.8 ± 1.2 0.0 ± 0.0

Table 3 Results on GemBench. We show the average success rates on the four evaluation settings of GemBench.
BridgeVLA establishes a new state of the art on this benchmark, achieving an average success rate of 50.0%.

4.1.2 Experiments on COLOSSEUM

Setup. To systematically evaluate the generalization capabilities of BridgeVLA, we further evaluate on the
COLOSSEUM benchmark [18]. The COLOSSEUM benchmark is an extension to the RLBench benchmark.
The model is trained on the data from the original RLBench benchmark but evaluated in environments spanning
12 axes of perturbations. These perturbations, which are unseen during training, encompass changes in object
texture, color, and size, backgrounds, lighting, distractors and camera poses. In total, the COLOSSEUM
creates 20,371 unique task perturbations instances to comprehensively evaluate the generalization capabilities
of the model. Specifically, our evaluation includes three steps: 1) train the model with the original RLBench
data without perturbations (100 trajectories per task) on 20 tasks, 2) evaluate each task over 25 trials per
perturbation, 3) compute the average success rate of all evaluated tasks for every perturbation. Besides the 12
types of perturbations, we also evaluate on basic variations from the original RLBench (denoted as RLBench

in Tab. 2), and a more challenging setting which combines all the 12 types of perturbations (denoted as All

Perturbations in Tab. 2).

Baselines. We compare BridgeVLA with five baseline methods. R3M-MLP and MVP-MLP are two 2D
methods that utilize pre-trained visual encoders to process observation images and an MLP for action
prediction. Specifically, R3M-MLP uses R3M [46] that is pre-trained on large-scale egocentric human videos;
MVP-MLP uses MVP [47] that is pre-trained on millions of in-the-wild data. Both visual encoders show
strong adaptability on various robotics tasks in both simulation and the real world. We also compare with
three 3D methods introduced in Sec. 4.1.1, i.e., PerAct [10], RVT [13], and RVT-2 [14].

Results. Results are shown in Tab. 2. BridgeVLA outperforms all the comparing baseline methods in terms
of average success rate, significantly outperforming the best baseline method by 7.3%. Among all the 14
evaluated perturbations, our method ranks the best among all methods in 13 of them. These results address
Q3, showcasing that BridgeVLA possesses strong robustness against visual perturbation. More detailed results
can be found in Tab. 5 and 6.

4.1.3 Experiments on GemBench

Setup. To further evaluate the generalization capabilities of BridgeVLA, we perform experiments on the
GemBench benchmark. GemBench [19] is a hierarchical generalization benchmark built on the RLBench
simulator [17]. Its training set contains 16 tasks (31 variations) covering seven core action primitives—press,
pick, push, screw, close, open, and stack/put. The test set consists of 44 tasks (92 variations), categorized
into four increasingly challenging settings:

L1 (Novel Placements): L1 consists of the original 16 tasks (31 variations). The object placements are
randomized within the workspace. In addition, chromatic distractors are introduced to test the ability to
handle additional visual complexity.

L2 (Novel Rigid Objects): L2 involves 15 unseen tasks (28 variations) that require interaction with 8 novel
rigid objects using learned primitives. The generalization capabilities are evaluated across two categories:
novel object-color compositions and novel object shapes.
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L3 (Novel Articulated Objects): L3 consists of 18 unseen tasks (21 variations) that involve interacting with
articulated objects. It evaluates the generalization capabilities across three categories: novel action-part
compositions, novel object instances, and novel object categories.

L4 (Novel Long-Horizon Tasks): L4 includes 6 complex long-horizon tasks (12 variations) that require combining
multiple actions to finish a whole task.

Baselines. In total, we compare with six baseline methods. 3D-LOTUS [19] processes point cloud inputs
through a language-conditioned point cloud transformer architecture [48]. It showcases notable multi-
tasking capabilities and high training efficiency. Its enhanced variant, 3D-LOTUS++ [19], integrates the
generalization capabilities of large-scale models into 3D-LOTUS with a modular architecture consisting of
three components: (1) LLM-based task planning [49], (2) VLM-based object grounding [50, 51], and (3)
motion control inherited from 3D-LOTUS. We also compare with four methods introduced in Sec. 4.1.1, i.e.,
Hiveformer [42], PolarNet [26], 3D Diffuser Actor [11], RVT-2 [14]

Results. Results are shown in Tab. 3 and more detailed results can be found in Appendix B.4. BridgeVLA
consistently outperforms all the comparing baseline methods in terms of average success rate across the four
evaluation settings. Notably, BridgeVLA achieves state-of-the-art results in both the L2 and L3 settings,
demonstrating strong generalization capabilities, addressing Q4. However, similar to most baseline approaches,
BridgeVLA exhibits limited performance in the L4 setting, where each task comprises multiple sub-tasks. In
the future, we plan to explore leveraging large language models (LLMs) for long-horizon task decomposition
and further improve the performance in such setting.

4.2 Real-Robot Experiments

Setup. In this section, we perform real-robot experiments to validate the effectiveness of BridgeVLA in the
real world. Our real-robot setup includes a Franka Research 3 robot arm mounted with a parallel-jaw gripper
(Fig. 3). A static ZED 2i depth camera is used to provide the colored point cloud observation. In total, we
evaluate on 13 tasks (see Tab. 11 for a full list of tasks). These tasks ranges from simple pick-and-place to
complex long-horizon tasks, requiring the robot to open a drawer and put items into the drawer. Each task
contains 3-9 keyframes (see Fig. 7 and 8 for visualization). For each task, we collect 10 expert trajectories for
training.

In total, we design 7 different settings to comprehensively evaluate our model’s performance. (1) Basic: The
model is evaluated in environments that are similar to the training data. (2) Distractor: Distractor objects
that are visually similar to at least one target object are added to the scene. (3) Lighting: The model is tested
in a visually distinct lighting condition in which the lights are turned off. (4) Background: Three different
tablecloths are used to change the background. (5) Height: All objects for manipulation are placed on a
drawer that is 9.5cm high. (6) Combination: We combine objects and skills that are not paired together in
the training datasets. That is, while the objects (e.g., red block and green plate) and skill (e.g., place A in B)
are seen during training, the instruction that pairs them together is novel (e.g., place the red block in the
green plate). In total, we evaluate 13 novel object-skill combinations (Fig. 11 and 12). (7) Category: To test
whether BridgeVLA is able to transfer the broad knowledge from pre-training to downstream policy learning,
we evaluate on manipulating objects from categories that are unseen in the robot training data. In total, we
test 7 novel objects (Fig. 13). Distractor, Lighting, Background, and Height aim to evaluate the robustness
against visual disturbances, while Combination and Category evaluate the generalization capabilities for
unseen instructions.

We compare with RVT-2 [14], the strongest baseline method in the simulation experiments (Sec. 4.1). In
addition, we compare with an ablated variant of BridgeVLA, BridgeVLA w/o Pre-train which excludes
the 2D-heatmap pre-training. This ablation study helps us understand the effectiveness of our proposed
pre-training method.

Results. Results are shown in Fig. 3. BridgeVLA outperforms both comparing baseline methods in six out
of the seven settings. All the three methods perform well in the Basic setting. However, RVT-2 struggles
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Figure 3 Real-Robot Experiments and Results. We use a Franka Research 3 robot arm and a ZED 2i camera to
capture point clouds of the scene. To evaluate the model’s performance, we design 7 different settings including one
basic setting and six generalization settings. Experimental results show that BridgeVLA outperforms the state-of-the-art
baseline method RVT-2 [14] by an average of 32%.

in all the four visual disturbance settings, while BridgeVLA performs better and is able to maintain high
performance in Distractor and Background settings. These results addresses Q3, indicating that BridgeVLA is
able to handle visual disturbance robustly. To assess the data efficiency of BridgeVLA, we also train the model
with only 3 trajectories per task. Remarkably, despite the limited data, BridgeVLA achieves a success rate of
96.8% in Basic, matching the performance achieved with 10 trajectories per task. This result underscores
the data efficiency of the proposed method, directly addressing Q2. Detailed per-task results are provided in
Appendix C.4.

BridgeVLA w/o Pre-train is not able to generalize well in both language-related generalization settings. Using
CLIP [52] as the text encoder, RVT-2 is able to outperform BridgeVLA w/o Pre-train in both settings.
BridgeVLA achieves the best performance across the two generalization settings. It significantly surpasses
the two baseline methods in Combination, highlighting its ability to understand language semantics. We
hypothesize that the 2D-heatmap pre-training equips BridgeVLA with the ability to connect the semantics in
language instructions with image observations in the heatmap space. These results address Q4 and highlight
the effectiveness and importance of the proposed 2D-heatmap pre-training.

Although our method outperforms baseline methods in the Category setting, its absolute success rate is not
high. A common failure mode is that the robot often ignores the target object and moves directly to the
destination during pick-and-place manipulation. We believe this relatively low performance is not due to
BridgeVLA forgetting the knowledge gained from pre-training, as it still predicts heatmaps accurately when
provided with samples from the pre-training dataset after fine-tuning (see Fig. 4 and Appendix C.3). Instead,
we hypothesize that the reduced performance stems from two factors: 1) The images in the pre-training
dataset are mostly captured from third-person views, which differ significantly from the projection images in
our robot data; 2) The pre-training task focuses solely on object localization, whereas manipulation involves
predicting keypoints that do not correspond to an object. To address these issues, we plan to expand both
the scale and diversity of the pre-training dataset and explore more expressive action-decoding methods to
better leverage the preserved pre-training knowledge.
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Figure 4 Prediction on Pre-training Data after Fine-tuning. To simulate the multi-view inputs during fine-tuning,
we repeat each pre-training image three times and feed them into the fine-tuned model to generate heatmaps. Note
that these samples are not cherry-picked. Additional samples can be found in Appendix C.3.

5 Conclusions & Future Work

This paper has introduced BridgeVLA, a novel and efficient 3D vision-language-action (VLA) model built on
top of a pre-trained vision-language model (VLM) [1]. Keys to our method are that (1) it converts 3D inputs
to 2D images to align with the 2D image inputs of the pre-trained VLM; (2) it aligns the input observation
and the output action to a unified 2D image space via 2D heatmap prediction; (3) it adopts a scalable
pre-training method to equip the VLM with the capability to predict heatmaps before fine-tuning on action
prediction. Extensive experiments show that the proposed method is able to learn 3D manipulation efficiently
and effectively in both simulation and the real world. In the future, we plan to explore pre-training on more
diverse tasks, including semantic segmentation and keypoint detection. We also want to incorporate more
expressive action-decoding methods (e.g., diffusion [21]) into the framework to continue improving the policy
performance.
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Pretrain RLBench Finetune COLOSSEUM Finetune GemBench Finetune Real-robot Finetune

learning rate 5e-5 8e-5 8e-5 8e-5 2e-5
optimizer AdamW AdamW AdamW AdamW AdamW
batch size 384 192 192 160 192

warmup steps 400 – – – –

Table 4 Training hyperparameters for BridgeVLA

Appendix

A Training

Detailed training configurations are summarized in Tab. 4. Throughout both pre-training and fine-tuning, we
keep the SigLIP vision encoder and language token embeddings frozen.

Computational Resources:

1. Pre-training: 8 NVIDIA A100 GPUs for 3,800 steps (≈2 hours)

2. RLBench fine-tuning: 48 NVIDIA H100 GPUs for 83,000 steps (≈20 hours)

3. COLOSSEUM fine-tuning: 48 NVIDIA H100 GPUs for 83,000 steps (≈20 hours)

4. GemBench fine-tuning: 40 NVIDIA A100 GPUs for 50 epochs (≈2.1 hours)

5. Real-world fine-tuning: 8 NVIDIA A100 GPUs for 300 epochs (≈1.5 hours)

B Simulation Experiments

B.1 Key frame Selection

For all the simulation and real-robot experiments, we adopt the same key frame selection strategy as PerAct [10].
A time step is labeled as a key frame if (i) the robot is stationary, (ii) the gripper state changes, or (iii) the
step is the final state of the episode. The robot is considered stationary when the absolute velocities of all
joints fall below 0.1 rad/s.

B.2 Data

Following [10, 13, 14], we select 18 tasks from RLBench [17] to evaluate the performance of our method on
complex manipulation tasks. These tasks are visualized in Fig. 5.

To assess the generalization capability of BridgeVLA, we also evaluate on the COLOSSEUM benchmark [18]
and GemBench [19]. The COLOSSEUM benchmark includes 20 basic tasks and 12 types of perturbations.
These perturbations, which are unseen during training, encompass changes in object texture, color, and
size, backgrounds, lighting, distractors and camera poses. The benchmark evaluates on all the 12 types of
perturbations, a setting with basic variations from the original RLBench, and a more challenging setting
which combines all the 12 types of perturbations. We visualize all perturbations except the one from the
original RLBench in Fig. 6.

For GemBench, the training set includes 16 tasks (31 variations) spanning seven fundamental action primitives
(press, pick, push, screw, close, open, stack/put). The test set includes 44 tasks (92 variations) organized into
four increasingly challenging settings. Unlike RLBench and COLOSSEUM, where demo augmentation is used,
we train BridgeVLA using only keyframes from each trajectory without performing any demo augmentation
in GemBench.

15



B.3 Detailed Results on COLOSSEUM

For the COLOSSEUM results in Tab.2, we use the results of R3M-MLP [46], MVP-MLP [47], RVT [13], and
PerAct [10] from the original COLOSSEUM paper [18]. For RVT-2 [14] and BridgeVLA, we perform our
own training and evaluation process. We performed three test repetitions and report the average success
rate and variance of BridgeVLA and RVT-2 for each task under different perturbations in Tab.5 and Tab.6,
respectively.

B.4 Detailed Results on GemBench

We show per-task success rates on the four settings of GemBench in Tab. 7, 8, 9, 10. The results of baseline
methods are sourced from [19]. In total, we evaluate on 5 random seeds to reduce statistical variance. And
for every seed, we run 20 trials per task variation.

C Real-Robot Experiments

C.1 Experiment Setup

Fig. 3 illustrates our real-robot setting. The platform comprises a 7-DoF Franka Research 3 manipulator with
a parallel-jaw gripper and a ZED 2i stereo camera mounted on a tripod for capturing point clouds of the
workspace. We collect expert trajectories with a kinestheic teaching approach. We first move the manipulator
to keypoints of an expert trajectory and then play back the keypoints to record the observation and action at
each keypoint.

C.2 Generalization Settings

We evaluate on a total of six generalization settings: Distractor, Lighting, Background, Height, Combination,
and Category. For Distractor, Lighting, Background, and Height, we visualize these settings in Fig. 10. We
visualize the settings of Combination and Category in Fig. 11 and Fig. 12, respectively.

In Distractor, we add distractor objects that are visually similar to at least one target object to the scene. In
Lighting, we evaluate the model in a novel lighting condition in which the lights are off. In Background, we
use three different tablecloths to change the background. For Height, we elevate all objects for manipulation
with a drawer that is about 10cm high. Distractor, Lighting, Background, and Height aim to evaluate the
robustness against visual disturbances.

In Combination, we combine objects and skills that are not paired together in the training datasets. That is,
while the object for manipulation and the manipulation skill are seen during training, the instruction that
pairs them together is novel. The setting of Combination helps us evaluate whether the model is able to
generalize across novel object-skill combinations. In Category, we want to evaluate whether BridgeVLA is
able to manipulate objects from categories that are unseen in the robot training data. In total, we test 7
novel objects.

C.3 Preservation of Object Grounding Capability after Fine-tuning

We observe that even after fine-tuning on robot action data, BridgeVLA retains the object grounding capability
learned during pre-training. We visualize its predictions on the pre-training dataset after fine-tuning in Fig. 14.
It is important to note that the samples in Fig. 14 are not cherry-picked. BridgeVLA does not forget its
pre-training knowledge after 3D action fine-tuning.

C.4 Per-task Success Rate

We showcase per-task success rates of BridgeVLA in the basic setting in Tab. 11. Notably, BridgeVLA achieves
exceptionally high success rates even with only 3 trajectories per task, highlighting its superb sample efficiency.
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basketball_in_hoop 100.0±0.0 4.0±3.3 94.7±1.9 96.0±0.0 84.0±5.7 - 100.0±0.0 68.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 37.3±1.9 100.0±0.0 100.0±0.0 100.0±0.0
close_box 100.0±0.0 72.0±0.0 94.7±1.9 - - - 93.3±1.9 - 100.0±0.0 100.0±0.0 98.7±1.9 98.7±1.9 100.0±0.0 97.3±1.9 100.0±0.0
close_laptop_lid 100.0±0.0 11.1±15.7 82.7±3.8 - - - 67.9±14.6 - 89.3±8.2 92.0±0.0 97.3±3.8 82.7±6.8 96.0±3.3 100.0±0.0 96.0±0.0
empty_dishwasher 0.0±0.0 0.0±0.0 1.3±1.9 1.3±1.9 - 1.3±1.9 4.0±3.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 1.3±1.9 1.3±1.9 0.0±0.0
get_ice_from_fridge 94.7±1.9 5.3±1.9 86.7±1.9 90.7±7.5 90.7±5.0 - 84.0±3.3 73.3±1.9 96.0±3.3 98.7±1.9 89.3±7.5 56.0±8.6 94.7±1.9 96.0±3.3 98.7±1.9
hockey 57.3±5.0 9.3±3.8 44.0±6.5 50.7±8.2 - 50.7±13.2 46.7±8.2 65.3±5.0 45.3±1.9 64.0±8.6 53.3±1.9 20.0±3.3 56.0±5.7 49.3±5.0 50.7±5.0
insert_onto_square_peg 93.3±3.8 23.3±2.4 52.0±3.3 94.7±1.9 - 76.0±8.6 85.3±3.8 70.7±3.8 84.0±0.0 88.0±3.3 88.0±3.3 44.0±11.8 86.7±1.9 77.3±5.0 96.0±0.0
meat_on_grill 96.0±0.0 9.3±1.9 32.0±0.0 88.0±5.7 - - 100.0±0.0 - 100.0±0.0 92.0±6.5 90.7±1.9 98.7±1.9 97.3±1.9 100.0±0.0 100.0±0.0
move_hanger 37.3±3.8 2.7±3.8 26.7±3.8 46.7±3.8 - - - - 52.0±0.0 84.0±0.0 52.0±5.7 52.0±5.7 33.3±5.0 42.7±1.9 24.0±0.0
open_drawer 96.0±0.0 60.0±3.3 97.3±1.9 - - - 90.7±1.9 - 88.0±3.3 93.3±1.9 100.0±0.0 90.7±1.9 100.0±0.0 94.7±1.9 96.0±0.0
place_wine_at_rack_location 88.0±5.7 17.3±13.6 82.7±5.0 89.3±7.5 - 92.0±6.5 93.3±3.8 90.7±3.8 90.7±5.0 97.3±1.9 88.0±3.3 74.7±3.8 90.7±6.8 92.0±3.3 92.0±8.6
put_money_in_safe 94.7±1.9 6.7±5.0 78.7±1.9 74.7±1.9 81.3±6.8 89.3±5.0 92.0±3.3 - 37.3±12.4 84.0±3.3 84.0±3.3 84.0±3.3 89.3±1.9 86.7±8.2 86.7±1.9
reach_and_drag 100.0±0.0 0.0±0.0 89.3±3.8 96.0±0.0 94.7±5.0 84.0±5.7 94.7±1.9 38.7±5.0 92.0±3.3 88.0±5.7 78.7±3.8 28.0±8.6 100.0±0.0 100.0±0.0 94.7±3.8
scoop_with_spatula 96.0±3.3 6.7±1.9 94.7±1.9 93.3±1.9 85.3±3.8 85.3±3.8 78.7±3.8 86.7±5.0 90.7±1.9 88.0±6.5 77.3±1.9 20.0±5.7 90.7±6.8 89.3±1.9 93.3±1.9
setup_chess 10.7±1.9 0.0±0.0 1.3±1.9 8.0±0.0 8.0±3.3 - 13.3±1.9 - 12.0±5.7 21.3±8.2 13.3±3.8 5.3±1.9 20.0±5.7 16.0±5.7 4.0±3.3
slide_block_to_target 100.0±0.0 24.0±3.3 74.7±1.9 - 92.0±3.3 - - - 100.0±0.0 100.0±0.0 98.7±1.9 84.0±9.8 100.0±0.0 100.0±0.0 100.0±0.0
stack_cups 58.7±3.8 29.3±1.9 66.7±1.9 - 50.7±1.9 - 44.0±3.3 - 62.7±1.9 64.0±3.3 65.3±8.2 26.7±7.5 73.3±8.2 64.0±14.2 72.0±8.6
straighten_rope 61.3±6.8 8.0±5.7 16.0±5.7 - 48.0±3.3 - - - 61.3±9.4 65.3±1.9 54.7±8.2 37.3±5.0 70.7±8.2 66.7±7.5 72.0±6.5
turn_oven_on 93.3±1.9 85.3±3.8 94.7±3.8 - - - 90.7±1.9 - 93.3±3.8 94.7±7.5 96.0±3.3 96.0±3.3 96.0±0.0 88.0±3.3 100.0±0.0
wipe_desk 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 - 0.0±0.0 - 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Task Mean 73.9±0.7 18.7±2.2 60.5±1.1 63.8±0.1 63.5±1.5 68.4±3.3 69.3±1.0 61.7±0.8 69.7±1.2 75.7±0.9 71.3±0.7 51.8±1.5 74.8±1.0 73.1±0.2 73.8±0.3

Table 5 Success Rates of BridgeVLA under Different Perturbations of COLOSSEUM.
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basketball_in_hoop 100.0±0.0 10.0±2.0 99.0±1.7 94.0±2.0 97.0±1.7 - 100.0±0.0 86.0±3.5 95.0±1.7 94.0±2.0 84.0±6.3 89.0±3.3 100.0±0.0 99.0±1.7 100.0±0.0
close_box 93.0±4.4 36.0±8.5 70.0±6.6 - - - 86.0±3.5 - 99.0±1.7 97.0±1.7 91.0±4.4 93.0±3.3 97.0±1.7 94.0±2.0 99.0±1.7
close_laptop_lid 86.0±4.5 40.0±0.0 89.0±3.3 - - - 62.0±2.0 - 84.0±4.0 92.0±0.0 96.0±2.8 89.0±5.2 99.0±1.7 87.0±3.3 92.0±0.0
empty_dishwasher 0.0±0.0 0.0±0.0 1.0±1.7 0.0±0.0 - 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
get_ice_from_fridge 95.0±1.7 11.0±4.4 88.0±5.7 77.0±5.2 89.0±1.7 - 78.0±3.5 79.0±3.3 83.0±5.9 89.0±1.7 70.0±4.5 86.0±4.5 81.0±5.2 96.0±2.8 96.0±2.8
hockey 19.0±4.4 0.0±0.0 26.0±4.5 30.0±4.5 - 40.0±4.9 24.0±2.8 13.0±3.3 12.0±8.5 15.0±3.3 9.0±3.3 10.0±6.0 14.0±2.0 17.0±3.3 19.0±3.3
insert_onto_square_peg 31.0±3.3 0.0±0.0 13.0±1.7 35.0±9.5 - 32.0±2.8 33.3±8.6 21.0±1.7 30.0±2.0 9.0±1.7 4.0±4.9 9.0±3.3 35.0±3.3 35.0±1.7 23.0±4.4
meat_on_grill 100.0±0.0 89.0±1.7 100.0±0.0 100.0±0.0 - - 100.0±0.0 - 99.0±1.7 98.0±2.0 100.0±0.0 99.0±1.7 100.0±0.0 100.0±0.0 100.0±0.0
move_hanger 91.0±5.2 0.0±0.0 61.0±4.4 83.0±18.4 - - - - 55.0±5.9 69.0±5.9 29.0±5.2 92.0±2.8 94.0±2.0 87.0±4.4 22.0±2.0
open_drawer 99.0±1.7 25.0±4.4 63.0±4.4 - - - 92.0±0.0 - 88.0±0.0 92.0±0.0 99.0±1.7 86.0±8.2 100.0±0.0 95.0±1.7 95.0±1.7
place_wine_at_rack_location 96.0±4.9 28.0±6.3 74.0±4.5 98.0±2.0 - 93.0±5.2 87.0±3.3 90.0±6.6 81.0±7.1 87.0±4.4 95.0±6.6 83.0±3.3 89.0±5.9 96.0±2.8 91.0±5.2
put_money_in_safe 77.0±4.4 9.0±1.7 45.0±3.3 22.0±3.5 55.0±6.6 73.0±3.3 69.0±1.7 - 56.0±2.8 70.0±4.5 72.0±6.3 82.0±6.6 79.0±3.3 77.0±8.7 62.0±6.0
reach_and_drag 86.0±6.6 0.0±0.0 72.0±5.7 80.0±5.7 60.0±6.9 67.0±5.9 87.0±6.6 55.0±4.4 68.0±2.8 76.0±2.8 71.0±5.2 61.0±6.6 88.0±2.8 86.0±3.5 81.0±5.9
scoop_with_spatula 89.0±5.2 2.0±3.5 75.0±4.4 87.0±3.3 84.0±4.9 92.0±7.5 94.0±4.5 83.0±5.9 54.0±2.0 79.0±5.2 74.0±6.0 83.0±5.9 92.0±2.8 91.0±1.7 89.0±4.4
setup_chess 3.0±1.7 0.0±0.0 0.0±0.0 4.0±2.8 4.0±4.0 - 17.0±7.1 - 7.0±5.2 7.0±3.3 9.0±7.1 14.0±4.5 14.0±3.5 16.0±8.9 9.0±3.3
slide_block_to_target 100.0±0.0 11.0±4.4 45.0±1.7 - 97.0±1.7 - - - 84.0±4.9 96.0±0.0 83.0±5.2 82.0±8.7 100.0±0.0 100.0±0.0 100.0±0.0
stack_cups 35.0±5.2 0.0±0.0 47.0±5.9 - 45.0±5.9 - 23.0±4.4 - 18.0±2.0 16.0±4.0 13.0±9.5 19.0±7.7 24.0±2.8 43.0±9.1 40.0±2.8
straighten_rope 66.0±11.5 0.0±0.0 25.0±3.3 - 66.0±10.0 - - - 53.0±1.7 68.0±2.8 39.0±11.4 42.0±7.2 72.0±8.5 69.0±6.6 75.0±4.4
turn_oven_on 91.0±4.4 50.0±10.8 68.0±4.9 - - - 83.0±1.7 - 95.0±3.3 97.0±1.7 95.0±3.3 96.0±0.0 96.0±4.9 89.0±7.1 96.0±2.8
wipe_desk 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 - 0.0±0.0 - 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Task Mean 67.8±1.5 15.6±0.8 53.0±0.9 54.6±0.6 59.7±0.7 56.7±1.4 60.9±0.9 53.4±1.5 58.0±1.1 62.6±0.9 56.6±0.9 60.8±0.5 68.7±1.1 68.8±1.3 64.4±0.5

Table 6 Success Rates of RVT-2 under Different Perturbations of COLOSSEUM.
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Method Avg. Close
Fridge+0

Close
Jar+15

Close
Jar+16

CloseLaptop
Lid+0

Close
Microwave+0

LightBulb
In+17

LightBulb
In+19

Open
Box+0

Open
Door+0

Open
Drawer+0

Hiveformer [42] 60.3±1.5 96±4.2 64±13.9 92±2.7 90±3.5 88±7.6 12±4.5 13±6.7 4±4.2 53±15.2 15±12.2

PolarNet [26] 77.6±0.9 99±2.2 99±2.2 99±2.2 95±3.5 98±2.7 72±12.5 71±6.5 32±11.5 69±8.9 61±12.4

3D diffuser actor [11] 91.9±0.8 100±0.0 100±0.0 100±0.0 99±2.2 100±0.0 85±5.0 88±2.7 11±2.2 96±4.2 82±9.1

RVT-2 [14] 89.0±0.8 77±11.0 97±4.5 98±2.7 77±13.0 100±0.0 93±5.7 91±8.2 7±4.5 98±4.5 93±5.7

3D-LOTUS [19] 94.3±3.5 96±3.7 100±0.0 100±0.0 98±2.5 98±4.0 84±7.4 85±9.5 99±2.0 77±2.5 83±8.7

3D-LOTUS++ [19] 68.7±0.6 95±0.0 100±0.0 99±2.0 28±2.5 87±5.1 55±10.5 45±8.9 55±8.9 79±9.7 68±12.5

BridgeVLA (Ours) 91.1±1.1 99±2.0 98±4.0 100±0.0 97±2.5 85±5.5 90±5.5 87±7.5 76±10.2 70±12.3 86±5.8

Method Open
Drawer+2

Pick&
Lift+0

Pick&
Lift+2

Pick&
Lift+7

PickUp
Cup+8

PickUp
Cup+9

PickUp
Cup+11

Push
Button+0

Push
Button+3

Push
Button+4

PutIn
Cupboard+0

Hiveformer [42] 59±7.4 86±4.2 92±6.7 93±2.7 83±7.6 69±12.9 61±19.8 84±11.9 68±6.7 87±7.6 34±8.2

PolarNet [26] 90±7.1 92±9.1 84±7.4 88±5.7 82±7.6 79±4.2 72±10.4 100±0.0 100±0.0 99±2.2 52±7.6

3D diffuser actor [11] 97±4.5 99±2.2 99±2.2 99±2.2 96±2.2 97±4.5 98±2.7 98±2.7 96±4.2 98±2.7 85±5.0

RVT-2 [14] 94±4.2 99±2.2 98±2.7 100±0.0 99±2.2 99±2.2 99±2.2 100±0.0 100±0.0 100±0.0 88±8.4

3D-LOTUS [19] 93±6.0 99±2.0 100±0.0 99±2.0 97±4.0 96±3.7 94±4.9 99±2.0 99±2.0 100±0.0 89±5.8

3D-LOTUS++ [19] 75±4.5 97±6.0 94±3.7 93±5.1 86±8.0 88±6.8 91±4.9 100±0.0 100±0.0 100±0.0 1±2.0

BridgeVLA(Ours) 99±2.0 99±2.0 100±0.0 98±2.5 96±2.0 94±3.7 99±2.0 100±0.0 98±4.0 98±4.0 74±6.6

Method PutIn
Cupboard+3

PutMoney
InSafe+0

PutMoney
InSafe+1

Reach&
Drag+14

Reach&
Drag+18

Slide
Block+0

Slide
Block+1

Stack
Blocks+30

Stack
Blocks+36

Stack
Blocks+39

Hiveformer [42] 74±6.5 85±3.5 88±2.7 37±5.7 32±7.6 99±2.2 91±12.4 6±5.5 7±4.5 6±4.2

PolarNet [26] 88±4.5 93±4.5 95±5.0 99±2.2 99±2.2 100±0.0 0±0.0 34±10.8 30±9.4 36±12.9

3D diffuser actor [11] 82±11.5 95±5.0 98±2.7 100±0.0 99±2.2 100±0.0 89±4.2 88±7.6 85±6.1 89±5.5

RVT-2 [14] 80±6.1 93±8.4 96±8.5 85±10.0 94±2.2 100±0.0 37±6.7 88±5.7 93±2.7 88±11.5

3D-LOTUS [19] 72±11.2 94±3.7 99±2.0 99±2.0 100±0.0 100±0.0 100±0.0 94±5.8 91±6.6 90±4.5

3D-LOTUS++ [19] 2±2.5 22±6.8 16±4.9 94±3.7 62±8.7 100±0.0 65±5.5 86±5.8 20±4.5 28±13.6

BridgeVLA (Ours) 84±6.6 79±9.7 86±3.7 96±5.8 97±4.0 100±0.0 90±5.5 77±8.1 87±4.0 85±7.8

Table 7 Per-task Success Rate on GemBench Level 1.

Method Avg. Push
Button+13

Push
Button+15

Push
Button+17

Pick&
Lift+14

Pick&
Lift+16

Pick&
Lift+18

PickUp
Cup+10

PickUp
Cup+12

PickUp
Cup+13

Hiveformer 26.1±1.4 97±2.7 85±10.0 88±2.7 21±6.5 9±4.2 8±6.7 30±7.1 22±13.5 26±10.6

PolarNet 37.1±1.4 100±0.0 100±0.0 85±7.9 3±4.5 1±2.2 0±0.0 48±11.0 46±8.9 16±6.5

3D diffuser actor 43.4±2.8 87±13.0 81±6.5 60±9.4 9±4.2 18±9.1 0±0.0 84±5.5 60±11.7 62±13.0

RVT-2 51.0±2.3 100±0.0 100±0.0 100±0.0 47±7.6 29±9.6 8±4.5 81±8.2 59±9.6 72±9.7

3D-LOTUS 49.9±2.2 99±2.0 100±0.0 100±0.0 3±2.5 18±8.7 33±9.3 89±3.7 78±8.7 57±7.5

3D-LOTUS++ 64.5±0.9 99±2.0 100±0.0 99±2.0 94±3.7 96±3.7 95±3.2 79±4.9 89±9.7 84±10.2

BridgeVLA (Ours) 65.0±1.3 100±0.0 100±0.0 100±0.0 74±9.7 89±4.9 0±0.0 91±3.7 90±3.2 90±6.3

Method Stack
Blocks+24

Stack
Blocks+27

Stack
Blocks+33

Slide
Block+2

Slide
Block+3

Close
Jar+3

Close
Jar+4

LightBulb
In+1

LightBulb
In+2

Lamp
On+0

Hiveformer 0±0.0 4±4.2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 4±4.2 0±0.0 7±4.5

PolarNet 1±2.2 2±2.7 6±8.2 0±0.0 0±0.0 20±10.6 82±5.7 22±11.5 17±8.4 14±10.8

3D diffuser actor 66±13.9 82±2.7 50±14.6 0±0.0 0±0.0 23±16.8 82±5.7 51±17.8 60±10.0 7±7.6

RVT-2 18±4.5 56±16.7 45±13.7 0±0.0 1±2.2 7±7.6 77±5.7 68±14.4 6±6.5 0±0.0

3D-LOTUS 13±8.1 40±9.5 69±5.8 0±0.0 0±0.0 71±5.8 90±4.5 24±4.9 41±8.6 0±0.0

3D-LOTUS++ 22±9.3 83±7.5 59±3.7 27±9.8 5±3.2 98±2.5 96±3.7 56±9.7 43±7.5 2±2.0

BridgeVLA (Ours) 61±10.7 51±13.2 79±8.6 12±9.3 3±4.0 66±6.6 88±4.0 66±8.6 74±5.8 7±4.0

Method Reach&
Drag+5

Reach&
Drag+7

PutCube
InSafe+0

Pick&Lift
Cylinder+0

Pick&Lift
Star+0

Pick&Lift
Moon+0

Pick&Lift
Toy+0

PutIn
Cupboard+7

PutIn
Cupboard+8

Hiveformer 1±2.2 0±0.0 4±2.2 78±5.7 73±7.6 88±2.7 87±4.5 0±0.0 0±0.0

PolarNet 61±8.2 10±6.1 40±14.1 93±6.7 88±8.4 93±6.7 90±3.5 0±0.0 0±0.0

3D diffuser actor 0±0.0 64±6.5 3±2.7 99±2.2 43±17.9 91±9.6 30±9.4 0±0.0 3±4.5

RVT-2 91±2.2 89±6.5 6±5.5 98±2.7 98±4.5 94±4.2 78±8.4 0±0.0 0±0.0

3D-LOTUS 95±4.5 18±10.8 25±5.5 88±8.7 69±6.6 80±8.4 96±3.7 0±0.0 0±0.0

3D-LOTUS++ 94±2.0 64±12.4 37±5.1 91±2.0 94±3.7 29±6.6 71±2.0 1±2.0 0±0.0

BridgeVLA (Ours) 94±3.7 96±3.7 3±2.5 98±2.5 99±2.0 95±3.2 93±5.1 0±0.0 0±0.0

Table 8 Per-task Success Rate on GemBench Level 2.

18



Method Avg. Close
Door+0

Close
Box+0

Close
Fridge2+0

CloseLaptop
Lid2+0

Close
Microwave2+0

Open
Door2+0

Open
Box2+0

Hiveformer 35.1±1.7 0±0.0 1±2.2 34±9.6 52±9.1 15±7.1 32±11.5 5±3.5

PolarNet 38.5±1.7 0±0.0 0±0.0 78±5.7 26±8.2 74±6.5 33±6.7 23±8.4

3D diffuser actor 37.0±2.2 0±0.0 0±0.0 97±2.7 23±6.7 88±7.6 86±7.4 67±9.8

RVT-2 36.0±2.2 1±2.2 2±2.7 72±6.7 42±14.0 71±8.9 79±6.5 5±6.1

3D-LOTUS 38.1±1.1 0±0.0 58±8.1 36±9.7 54±10.7 85±7.1 42±6.8 11±6.6

3D-LOTUS++ 41.5±1.8 1±2.0 29±8.6 93±2.5 50±9.5 99±2.0 52±10.3 16±8.0

BridgeVLA (Ours) 43.8±1.2 0±0.0 1±2.0 95±5.5 77±4.0 54±10.2 68±10.8 74±4.9

Method Open
Drawer2+0

Open
Drawer3+0

OpenDrawer
Long+0

OpenDrawer
Long+1

OpenDrawer
Long+2

OpenDrawer
Long+3

Toilet
SeatUp+0

Open
Fridge+0

Hiveformer 59±11.9 39±11.9 78±8.4 82±4.5 49±4.2 57±11.5 6±4.2 0±0.0

PolarNet 91±4.2 29±8.2 84±11.9 88±5.7 63±8.4 37±7.6 2±2.7 4±2.2

3D diffuser actor 19±8.2 1±2.2 15±5.0 35±13.7 26±9.6 79±12.9 0±0.0 7±5.7

RVT-2 81±11.9 0±0.0 84±8.2 39±10.8 11±8.9 75±6.1 7±5.7 0±0.0

3D-LOTUS 90±3.2 22±8.1 56±13.9 33±11.2 17±8.1 75±6.3 0±0.0 4±5.8

3D-LOTUS++ 70±5.5 41±4.9 72±4.0 52±10.8 23±8.1 78±5.1 8±5.1 0±0.0

BridgeVLA (Ours) 65±6.3 87±6.0 59±8.6 34±8.0 18±10.3 85±8.4 6±5.8 7±2.5

Method OpenLaptop
Lid+0

Open
Microwave+0

PutMoney
InSafe+2

Open
Drawer+1

Close
Drawer+0

Close
Grill+0

Hiveformer 100±0.0 0±0.0 0±0.0 0±0.0 83±5.7 44±10.8

PolarNet 100±0.0 0±0.0 1±2.2 4±4.2 29±11.9 42±11.5

3D diffuser actor 100±0.0 0±0.0 2±4.5 0±0.0 66±7.4 65±13.7

RVT-2 93±5.7 0±0.0 0±0.0 6±2.2 78±8.4 9±4.2

3D-LOTUS 100±0.0 0±0.0 0±0.0 0±0.0 87±8.1 29±6.6

3D-LOTUS++ 86±6.6 0±0.0 13±8.1 0±0.0 69±5.8 19±13.9

BridgeVLA (Ours) 95±0.0 0±0.0 2±2.5 0±0.0 58±12.9 35±12.3

Table 9 Per-task Success Rate on GemBench Level 3.

Method Avg. Push
Buttons4+1

Push
Buttons4+2

Push
Buttons4+3

TakeShoes
OutOfBox+0

PutItems
InDrawer+0

PutItems
InDrawer+2

Hiveformer 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

PolarNet 0.1±0.2 1±2.2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D diffuser actor 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

RVT-2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D-LOTUS 0.3±0.3 3±4.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D-LOTUS++ 17.4±0.4 76±7.4 49±8.6 37±8.1 0±0.0 0±0.0 0±0.0

BridgeVLA (Ours) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

Method PutItems
InDrawer+4 Tower4+1 Tower4+3 Stack

Cups+0
Stack

Cups+3
PutAllGroceries
InCupboard+0

Hiveformer 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

PolarNet 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D diffuser actor 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

RVT-2 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D-LOTUS 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

3D-LOTUS++ 0±0.0 17±10.8 30±13.4 0±0.0 0±0.0 0±0.0

BridgeVLA (Ours) 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0 0±0.0

Table 10 Per-task Success Rate on GemBench Level 4.
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Put groceries in cupboard Put item in drawer Put money in safe

Reach and drag Slide block to color target Stack cups

Sweep to dustpan of size Turn tap Stack blocks

Place shape in shape sorter Place wine at rack locationMeat off grill

Light blub inClose jar Insert onto square peg

Open drawer Place cupsPush buttons

Figure 5 Visualization of 18 RLBench [17] Tasks.
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All Variations

Manipulation-
Object-Color

Receiving-
Object-Color

Manipulation-
Object-Texture

Receiving-
Object-Texture

Manipulation-
Object-Size

Receiving-
Object-Size

Light-Color

Table-Color

Table-Texture

Distractor

Backgroun
d-Texture

Camera Pose

Basketball in hoop Close box Close laptop lid

Empty dishwasher Get ice from fridge Insert onto square peg

Hockey Meat on grill Place wine at rack location

Put money in safe Reach and drag Scoop with spatula

Hockey Insert onto square peg Place wine at rack location

Setup chess Turn oven on Wipe desk

Basketball in hoop Hockey Insert onto square peg

Stack cups Strengthen rope Turn oven on

Put money in safe Reach and drag Scoop with spatula

Close laptop lid Get ice from fridge Open drawer

Move hanger Setup chess Slide block to target

Basketball in hoop Open drawer Wipe desk

Close box Empty dishwasher Setup chess

Figure 6 Visualization of Perturbations in COLOSSEUM [18].
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Task 3 trajectories 10 trajectories

Put the RedBull can in the top shelf 5/5 5/5
Put the soda can in the bottom shelf 5/5 5/5

Put the RedBull can in the bottom shelf 5/5 5/5
Put the coke can in the top shelf 5/5 5/5

Place the red block in the blue plate 5/5 5/5
Place the orange block in the green plate 5/5 5/5

Put the wolf in the upper drawer 3/5 4/5
Place the red block in the purple plate 5/5 5/5

Place the yellow block in the green plate 5/5 5/5
Press sanitizer 5/5 5/5

Put the zebra in the upper drawer 5/5 5/5
Put the giraffe in the lower drawer 5/5 4/5
Put the zebra in the lower drawer 5/5 5/5

Table 11 Per-task Success Rates of BridgeVLA in the Basic Setting.
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Initial Scene
Place orange block in green plate

Place red block in blue plate
Initial Scene

Initial Scene
Place red block in purple plate

Initial Scene
Place yellow block in green plate

Initial Scene
Press sanitizer

Initial Scene
Put soda can in bottom shelf

Initial Scene
Put coke can in top shelf

Figure 7 Real-Robot Rollouts (I).
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Initial Scene
Put Redbull can in bottom shelf

Initial Scene
Put Redbull can in top shelf

Initial Scene
Put giraffe in lower drawer

Initial Scene
Put wolf in upper drawer

Initial Scene
Put zebra in upper drawer

Initial Scene
Put zebra in lower drawer

Figure 8 Real-Robot Rollouts (II).
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half eaten frosted donut behind cup horse in the back kid in glasses playing wii

orange slice under grapes person taking photo right animal

tractor with orange
small lamb sitting on ground on the 
right hand side next to two others. the woven place matt

white bowl with vegetables. white doughnut right white keyboard

zebra facing out number three 
from tree

15 an elephant with other two elephants

baby far middle right elephant
Find all instances of a circular frame 

with spokes

Find all instances of a decorative 
arrangement of flowers.

Find all garments from waist to knee 
or ankle, covering each leg separately Find all instances of bike

Find all instances of boot Find all instances of clock tower Find all instances of cup

greenest apple by banana
Find all instances of a piece of furniture 
holding one or more electric light bulbs Find all instances of surfboard

white bowl with vegetables Find all instances of street sign the woven place matt

Figure 9 Visualization of Pre-training Data. We list some samples of pre-training data. For every sample, the
left shows the original image; the middle shows the bounding boxes of the objects of interest; the right shows the
ground-truth heatmap used for training.
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Task

Put the 
RedBull can in 

the top shelf

Put the soda can 
in the bottom 

shelf

Place the red 
block in the blue 

plate

Place the orange 
block in the green 

plate

Press sanitizer

Put the zebra in 
the upper 

drawer

Put the giraffe 
in the lower 

drawer

Distractor Lighting HeightBackground

Figure 10 Visualization of the Distractor, Lighting, Background, and Height settings.
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put the wolf in 
the lower drawer

put the 
giraffe in the 
upper drawer

place the 
orange block 
in the purple 

plate

place the red 
block in the 
green plate

place the 
orange block in 
the blue plate

place the 
yellow block in 
the blue plate

place the yellow 
block in the 
purple plate

put the soda can 
in the top shelf

Figure 11 Visualization of the Combination Setting (I). During training, the manipulated objects and skills are seen,
but their combinations are unseen.
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Put the red block 
in the bottom 

shelf

Put the orange 
block in the lower 

drawer

Put the soda can 
in the upper 

drawer

Put the Redbull 
can in the green 

plate

Place the zebra in 
the blue plate

Figure 12 Visualization of the Combination Setting (II). During training, the manipulated objects and skills are
seen, but their combinations are unseen.
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Press the 
mouse

Put the apple in 
the top shelf

Put the peach in 
the bottom shelf

Put the sneaker 
in the upper 

drawer

Put the panda in 
the lower 
drawer

Place the bread 
in the green 

plate

Place the bottle 
in the blue plate

Figure 13 Visualization of the Category Setting. In total, we evaluate on 7 objects from novel categories that are
unseen during training.
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Find all instances of a round faster Find all instances of baggage Find all instances of cutlery

Find all instances of mug Find all instances of neckwear Dog laying down

Find all instances of a container Find all instances of a long tube made of 
metal or plastic

Find all instances of alarm clock

white doughnut right Find all instances of veilFind all instances of bedding

Figure 14 Visualization of BridgeVLA’s Prediction on Pre-training Dataset after Fine-tuning. To simulate
the multi-view inputs during fine-tuning, we repeat the input image three times and feed them into the fine-tuned
model to generate heatmaps. For each sample, the first row shows the input image; the second row shows the heatmap
prediction; the third row shows the ground truth.
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